
The Application of Steiner Trees to Delay
Constrained Multicast Routing: a Tabu Search

Approach

Nina Skorin-Kapov, Mladen Kos
 Dept. of Telecommunications, FER

University of Zagreb
Zagreb, Croatia

{nina.skorin-kapov|mladen.kos}@fer.hr

Abstract— With today's development of information technology
comes the increased development of numerous real-time
multimedia network applications. Some examples include video
and tele-conferencing, tele-medicine, video-on-demand, distance
education, applications in finance, etc. Several of these
applications require multicasting with a certain Quality of
Service (QoS). One of the most important QoS parameters is the
maximum end-to-end delay from the source to any destination in
a multicast session. This paper deals with the problem of Delay-
Constrained Multicast Routing (DCMR). The DCMR problem
can be reduced to the Constrained Minimum Steiner Tree
Problem in Graphs (CMStTG). Since the Minimum Steiner Tree
Problem in Graphs (MStTG) has been proven to be NP-complete,
several heuristics have been developed for solving MStTG and
CMStTG. In this paper, we suggest a tabu search heuristic for
the DCMR problem. This heuristic was developed on the basis of
a tabu search heuristic designed for solving unconstrained
minimum Steiner tree problems. Preliminary testing on data
from a publicly available library, SteinLib, has shown that this
heuristic gives near optimal solutions in moderate time and a
moderate number of iterations for medium sized problems (50-
100 nodes). Comparing with a well known algorithm for solving
the CMStTG problem, tests have shown that our tabu search
heuristic is superior in quality for medium sized problems.

Keywords- multicast, constrained Steiner Tree, tabu search,
QoS

I. INTRODUCTION
Multicast is a mechanism that enables information to be

sent from one source to a group of destinations. In other words,
it is a technique that logically connects a subset of nodes in a
network. The development of multimedia applications in the
past several years has created an increasing need for this type
of distribution of information. Many applications, such as
video-conferencing, distance education, video-on-demand, etc.,
require packets of information to be sent with a certain Quality
of Service (QoS) . Among the most important QoS demands
are those concerning bandwidth and delay. In this paper we
will concentrate on the demand concerning end-to-end delay.
Real-time applications do not allow the end-to-end delay to
exceed a certain delay bound which represents a measure of the
quality of service of that application.

To support these types of multimedia applications,
specifically to support a large number of multicast sessions,
networks require efficient routing algorithms. These algorithms
must provide the neccessary Quality of Service while
minimizing the use of network resouces. In a given network,
multicasting usually consists of finding a minimum cost tree
that includes the source and all the destination nodes, while
attempting to satisfy the delay constraint and other QoS
demands. Other QoS demands could include the minimum
required bandwidth, the maximum allowed packet loss ratio
and the maximum delay jitter. The tree topology is most
frequentley used, since it enables parallel sending of packets to
multiple destinations and duplicating the packets is only
neccessary where the tree branches.

Multicast routing is often reduced to the Minimum Steiner
Tree Problem in Graphs (MStTG). Generally, for a given graph
G =(V, E), where V is a set of nodes and E is a set of edges,
and a given subset of nodes, D V, a Steiner tree is one which
connects all the nodes in D using a subset of edges in E. This
tree may or may not include nodes in V\D. Nodes in V\D which
are included in the Steiner tree are called Steiner nodes. The
MStTG problem deals with searching for such a tree that is of
minimal wieght in a weighted graph. This basically reduces to
searching for the set of Steiner nodes that gives the best
solution. Since the MStTG problem belongs to the NP-
complete class of problems [3], several heuristic algorithms
have been developed to solve it suboptimally. Examples of
such heuristics are found in [5], [6], [8], [9] and [11].

⊆

The MStTG problem can be augmented to include
additional constraints giving rise to the constrained MStTG
(CMStTG) problem. This paper is concerned with delay
constrained multicast routing (the DCMR problem). This
problem can be reduced to the Constrained Minimum Steiner
Tree Problem in Graphs (CMStTG), where the contraint is the
maximum end-to-end delay from the source to any destination.
This problem refers to the search for the minimum Steiner tree
that satisfies a delay constraint. We suggest a heuristic
algorithm for solving the CMStTG problem implementing the
tabu search method. Our heuristic was motivated by a tabu
search heuristic suggested by Leguesdron, Levendovsky,
Molnar and Vegso [7] for solving the MStTG problem. In our

approach, we incorporated a delay constraint which makes the
problem more complex. The algorithm was tested on data from
SteinLib ([4]), and compared to the results of Kompella et al.'s
centralized algorithm CSTC [6]. SteinLib is a library of test data
which includes optimal solutions for Steiner Tree problems and
is available on the WWW. After testing on small and medium
sized problems (50 – 100 nodes), results indicate that the
proposed tabu search method is superior to Kompella et al.'s
algorithm in solution quality. Further testing is required to
determine more exact performance measures of this heuristic.

In Section II we formally define the DCMR problem. In
Section III we introduce the tabu search method and describe
our heuristic algorithm for the DCMR problem. In Section IV
we present the performance analysis of our algorithm. We
finish with some concluding remarks in Section V.

II. THE DCMR PROBLEM MODEL
The communication network is modeled as a graph

G=(V,E), where V is the set of nodes and E is the set of edges.
On the graph G we define the functions c(i,j) and d(i,j), where
c(i,j) is the cost of using edge (i,j)∈E and d(i,j) is the delay
along edge (i,j)∈E. Given is a source node s and a set of
destination nodes S, where {s} S V. The upper delay
bound on the path from s to any node in S is denoted as ∆. The
delay-constrained multicast routing problem (DCMR) searches
for a tree T = (V

U

j)

⊆

∈ TE

T, ET), where VT ⊆

 j)(i,

 V and ET E, while

minimizing the cost of the tree, ∑ subject to the

following constraints: {s} S V

⊆
j)c(i,

⊆U

)j,i(

T and D(s, v) < ∆ for every

v∈S, where D(s,v)= for all edges (i,j) ∈ E∑ d(i, T on

the path from s to v in T.

We assume that the delay of an edge is a constant value
which represents the sum of the propagation delay along the
edge and the switching delay at the previous node. We also
assume that the cost of an edge is not neccessarily proportional
to its delay. The cost of an edge can represent various values
such as the actual cost or the transfer capacity of the link.

III.

A.

B.

1)

A TABU SEARCH HEURISTIC FOR THE DCMR
PROBLEM

Tabu search is a meta-heuristic which guides other
heuristics in such a way that they explore various areas of the
solution space. As a result, the tabu search method prevents
heuristics from remaining in local optimums.

The Idea Behind Tabu search
In every iterative step of the tabu search method, we begin

with the current solution. We explore its 'neighborhood', and
from this neighborhood we select the best possible solution that
does not necessarily have to improve the current one. This new
solution now becomes the current solution, and this is referred
to as a 'move'. We define the 'neighborhood' of the current
solution as that part of the solution space that is reachable by
applying an elementary transformation to the current solution.
These elementary transformations can be defined in numerous

ways in various tabu search heuristics and depend on the
specifics of the problem.

Certain problems arise while searching for the optimal
solution in this manner. Let us suppose that the current solution
is a local optimum. In this case, the new current solution
obtained in the next move would have to be somewhat worse.
The problem arises in the subsequent move because we would
be forced to return to our local optimum. In every following
iteration, we would alternate between these two solutions.
Hence, this heuristic would not enable us to explore various
areas of the solution space and would come to a standstill at the
first local optimum.

To prevent this occurrence, the tabu search method
introduces the idea of 'memory'. The tabu search method
'memorizes' the elementary transformations applied in a
number of previous moves. The inverses of these
transformations are placed in a so-called 'tabu-list'. While
exploring the neighborhood of the current solution in each
iteration, those potential solutions that can be reached by
applying a transformation on the tabu-list are eliminated. In
other words, moves that are the opposite of those already
executed are forbidden. This prevents us from going back to an
already used solution and getting stuck in a local optimum.

The tabu-list is updated following each move. This is done
by adding the inverse of the last executed elementary
transformation and removing the oldest one on the list of the
list is full. The length of the tabu-list can vary depending on
different problems. It is often determined experimentally in
order to allow good exploration of the solution space.

Description of the Proposed Algorithm
While solving the DCMR problem using our tabu search

heuristic, the problem is first reduced to the CMStTG problem.
In this problem, the constraint is the end-to-end delay from the
source to each destination. The heuristic is further developed
through modifications of a heuristic suggested by Leguesdron,
Levendovsky, Molnar and Vegso [7] for solving the MStTG
problem.

It has already been mentioned that for a given weighted
graph G=(V, E) and a set of nodes D V, a minimum Steiner
tree is such a tree which connects all the nodes in D using a
subset of edges in E that give the minimum total weight. In our
problem, we distinguish between one source node s and a
group of destination nodes S, so for us D = . Nodes in
V\D , which are included in the Steiner tree, are called Steiner
nodes.

⊆

Ss ∪

Graph Reductions
In accordance with the problem, we can reduce the size of

the graph before implementing the algorithm using a few of the
standard graph reductions described in [10], with a slight
modification due to the added delay constraint. First, we prune
the graph of all nondestinaton nodes (nodes in V\D) that are of
degree 1 since they will surely not be included in the solution.
Secondly, we observe that the adjacent edge of every
destination node that is of degree 1 will always be in the
Steiner tree. As a result of this, we can deem the adjacent node
of every such destination node as a destination node itself (if it

is not already deemed as such). This reduces the size of our
problem, since it reduces the number of nondestination nodes
among wich we have to decide which are to be included in the
Steiner tree.

For further reduction, we do the following: for every
nondestination node k that is of degree 2 with adjacent nodes i
and j, we can replace edges (i, k) and (k, j) from E with one
edge (i, j), where c(i, j)= c(i, k) + c(k, j) and d(i,j) = d(i,k) +
d(k,j). Node k is then deleted from the graph. If there already
exists an edge (i, j) in E, we compare its cost and delay
parameters to those of the newly constructed edge. If one of
these edges has both a lesser cost and a lesser delay, we can
eliminate the other from E. Otherwise, both edges remain in E.
This is because for various delay bounds the cheaper edge with
the greater delay may not satisfy the delay constraint while the
more expensive one might. After performing these reductions,
we execute our tabu search algorithm on the reduced graph

2) The Proposed Tabu search Algorithm: TS-CST
We will refer to our tabu search heuristic as the Tabu

Search – Constrained Steiner Tree (TS-CST) algorithm.
Potential solutions in our heuristic are potential constrained
Steiner trees represented by binary sets consisting of |V\D| bits.
Each bit corresponds to a different node in V\D. Nodes whose
corresponding bits are set to zero in a given configuration are
Steiner nodes. Nodes whose corresponding bits are set to 1 are
not included in the constrained Steiner tree. Each configuration
corresponds to a potential constrained Steiner tree because
there exists the possibility that for some configurations, no
constrained Steiner Tree can be found. Such is the case if a
configuration leaves the graph unconnected because then no
Steiner tree exists. Another possibility is that for a given
configuration, we cannot find a Steiner tree that satisfies the
given delay bound. We denote the cost of such solutions as
infinite.

The evaluation of a potential solution starts by eliminating
the non-Steiner non-destination nodes (that is, those nodes
whose coresponding bits are set to 1) from graph G along with
all their adjacent edges. The next step of the evaluation is to
find a Delay Constrained Spanning Tree (DCST) of this
modified graph while attempting to minimize its cost. There
are exact algorithms for finding the Minimum Spanning Tree
(MST) of a given graph in polynomial time. Such a solution,
though, may not necessarily satisfy our delay constraint. In this
paper, we modified Prim's algorithm for finding the MST so as
to yield a solution in which the end to end delay from the
source to every destination node is less than the given delay
bound ∆. Prim's algorithm [1], does the following: the tree
initially consists of one randomly selected node and in each
following iteration, the closest node to the existing tree is
added. This is done by examining all edges adjacent to the
existing tree and choosing the cheapest one. The procedure
ends when all the nodes are included in the tree. This tree
represents the MST of the initial graph. To ensure that our
delay constraint is met, we do the following: the tree initially
consists of only the source node. When subsequently searching
for the closest node to the existing tree, that is while examining
all adjacent edges, we choose that edge which is cheapest but
whose addition to the tree does not exceed the delay bound.
The procedure is finished when all the nodes are in the tree. In

every iteration of the TS-CST algorithm, to explore a
neighborhood, we find the cost of the found DCST for every
neighboring solution.

As already mentioned, neighboring solutions with respect
to the current one are all those that can be reached by applying
an elementary transformation to the current solution. In our
heuristic, as in [7], we use a set of |V\D| elementary
transformations, where the n-th transformation is defined as
changing the value of the n-th bit in the configuration that
represents the current solution. In accordance with this
definition, the neighborhood of the current solution is a set of
all the configurations which differ from the configuration of the
current solution by only one bit. This basically means that in
one 'move', our new current solution can only add or remove
one Steiner node with respect to the previous current solution.
Formally, if Xi-1=x1

(i-1)x2
(i-1)...x|V\D|

(i-1) represents some
configuration of bits, where every xk , k=1,2,...,|V\D| is a bit
which corresponds to the k-th node in V\D, applying
elementary transformation mn, n=1,2,...,|V\D| to Xi-1 gives us:

Xi = x1
(i)x2

(i)... x|V\D|
(i) = mn (Xi-1) =

= x1
(i-1)... xn-1

(i-1))1i(
nx − xn+1

(i-1)... x|V\D|
(i-1). (1)

In an i-th move, we select the neighboring solution Xi
whose DCST has the minimum cost and which is obtained by
applying an elementary transformation to Xi-1 that is not on the
tabu-list. This solution is compared with the best found
solution, the current incumbent solution, and the better of the
two is kept. The tabu-list is updated after every move by
adding the inverse of the elementary transformation applied to
Xi-1 to get Xi and eliminating the oldest member on the list.

It is imporatant to note that there exists the possibility that
no feasable solution can be found in the neighborhood of Xi-1
(the graph is always left unconnected or ∆ cannot be satisfied).
In this case, it is neccessary to choose an infeasable
neighboring solution to become the new current soultion Xi.
This solution, although it cannot improve the current
incumbent one, enables us to further explore the solution space
in the following iteration. In our heuristic, we choose the
infeasable neighboring solution mn(Xi-1), where n =(i) modulo
|V\D|+1 to become our new current solution Xi.

The initial configuration of the TS-CST algorithm is such
that all the bits are set to zero. This means that the Steiner tree
that corresponds to the initial configuration includes all the
nodes in V\D. In other words, all the nodes in V\D are Steiner
nodes.

A simple description of the TS-CST algorithm follows:

Begin
//initialization
Input nodes V and edges E from graph G;
Reduce graph G;
//initial configuration
X0 = x1(0)x2(0)..x|V\D|(0), where xk(0)=0, k=1,2,…,|V\D|
Update the graph so as to correspond to
 configuration X0;
X := X0; //global solution
C := ∞; //cost of the global solution

Find the DCST for configuration X using our
modificatio Prim's MST alg; n of

If DCST(X) exists then
 C := cost of DCST(X); //cost of the global solution
EndIf
TabuList := {};
DelayBound := ∆;
i = 0;

//iterations
While i < desired number of iterations do
Cit = ∞ ;
X = {}; it For n=1, ..., |V\D| do
 If m ∉TabuList, then n

 Xi := mn (Xi-1);
 Update the graph so as to
 correspond to config Xi;
 Find the DCST for config. Xi using
 our modification of
 Prim's MST alg;
 n co
 If graph is unconnected or ∆
 can't be met (DCST doesn't
 exist), then

C := st DCST(Xi);

 Cn := ∞;
 EndIf
 If Cn < Cit then
 Cit := Cn;
 Xit := Xi;
 EndIf
 EndIf
EndFor
If Cit := ∞ then
 //no feasable neighbor was found
 n := i modulo |V\D|+ 1;
 Xi := mn(Xi-1); Else
 Xi := Xit; EndIf
If Cit < C then
 X := Xit , C = Cit;

IV.

A.

EndIf
Add mn-1 to the Tabu list;
i := i+1;
EndWhile
End

NUMERICAL RESULTS
In this section we describe our experimental method and

briefly summarize the obtained results.

The Test Data and Experimental Method
The TS-CST algorithm, along with Kompella et al.'s

centralized algorithm CSTC [6], was implemented in C++ and
tested on data from [4]. (A brief description of the CSTC

TABLE I. CHARACTERISTICS OF THE PROBLEM SET AND THE OBTAINED
SOLUTION QUALITY WHILE SIMULATING THE MSTTG PROBLEM (∆=∞)

TS-CST CSTC Probl. |V| |D
|

|E| Copt
δTS-

CST
(%)

DTS-

CST
δCSTC

 (%)

DCSTC

B01 50 9 63 82 0 30 0 30
B02 50 13 63 83 0 55 8.43 55
B03 50 25 63 138 0 78 1.45 78
B04 50 9 100 59 0 58 0 58
B05 50 13 100 61 1.64 39 4.92 26
B06 50 25 100 122 0 93 4.92 65
B07 75 13 94 111 0 51 0 51
B08 75 19 94 104 0 49 0 49
B09 75 38 94 220 0 66 2.27 51
B10 75 13 150 86 0 66 13.95 78
B11 75 19 150 88 11.36 91 4.55 75
B12 75 38 150 174 0 75 0 125
B13 100 17 125 165 0 38 6.06 53
B14 100 25 125 235 1.28 80 1.28 70
B15 100 50 125 318 0 81 2.52 77
B16 100 17 200 127 7.09 95 7.87 64
B17 100 25 200 131 1.53 71 2.29 66
B18 100 50 200 218 0 113 3.67 80

algorithm is given in IV.B.) Both programs were executed on a
PC powered by an intel Celeron 600MHz processor with
256MB RAM. The dimensions of the problems are shown in
TABLE I. This test data was generated for the Minimum
Steiner Tree problem in Graphs (MStTG) with no added
constraints. As a result, the edges in the given test problems
have assigned only a cost value. Since our problem has an
added delay constraint we did the following: first we assigned a
randomly generated delay value to each edge. Next we chose
the first node in set D to serve as our source s. Set D is the set
of nodes given in the test data that must be spanned by the
Steiner tree. The remaining nodes in D\{s} are destination
nodes S.

Next we set the delay bound to a high enough value so as
not to act as a constraint (i.e. we simulated the MStTG
problem) and ran both CSTC and TS-CST. (The delay bound ∆
cannot actually be set to ∞ since the time complexity of the
CSTC algorithm is O(∆ |V|3)). If the cost of the obtained
solution is that supplied by the test data, we know that it is
optimal. We calculated the deviation of the obtained cost above
the optimal one and the maximum delay from the source to any
destination in the obtained solutions (TABLE I.). In our
problem, the smaller the delay bound, the stronger the
constraint. Therefore, to better test the performance of the
algorithms, we chose the smaller of the found maximum
delays and this value, incremented by 1, we set as our delay
bound ∆1 (TABLE II.). We also tested the algorithms with
delay bounds 10% greater (∆2, TABLE III.) and 10% smaller
(∆3, TABLE IV.) than ∆1. Note that if the cost of the found
solution to the MStTG problem that corresponds to the chosen
maximum delay is optimal, then we know that this is also the
optimal solution to the CMStTG problem when the delay
bound is ∆1 or ∆2. Such problems are marked with * in Tables
II and III and help give us a better idea of the quality of our
results. It is also possible for the TS-CST algorithm to obtain
the optimal solution provided by the test data for a smaller
delay bound even though it did not find such a solution when
simulating the MStTG problem. (Such is the case for problem
B17 for ∆3 (TABLE IV.).) This is because the algorithm can

TABLE II. COMPARISON OF THE SOLUTION QUALITY FOR
∆1 = MIN (DTS-CST(∆=∞) , DCSTC(∆=∞)) + 1

TS-CST CSTC Probl. ∆1
CTS-

CST
DTS

-CST
TTS-

CST2
(sec)

CCST

C

DCST

C

TCSTC
(sec)

δCSTC /

TS-CST
(%)

B01* 31 82* 30 0.189 82* 30 0.331 0
B02* 56 83* 55 0.249 90 55 0.930 +8.43
B03* 79 138* 78 0.321 140 78 1.341 +1.45
B04* 59 59* 58 2.063 75 58 1.112 +2.71
B05 27 76 26 2.484 63 26 0.450 -1.71
B06 66 126 63 1.892 128 65 1.232 +1.59
B07* 52 111* 51 0.690 118 51 2.554 +6.30
B08* 50 104* 49 0.531 110 39 2.424 +5.77
B09 52 231 48 0.541 225 51 2.523 -2.60
B10* 67 86* 66 9.653 106 51 3.704 +23.26
B11 76 92 61 10.845 92 75 4.276 0
B12* 76 174* 66 8.993 175 71 4.307 +0.57
B13* 39 165* 38 2.234 187 38 4.456 +1.33
B14 71 239 64 2.813 238 70 8.021 -0.42
B15 78 330 61 2.624 328 71 8.812 -0.61
B16 65 149 58 25.656 143 64 8.001 -4.02
B17 67 135 49 25.095 148 49 8.683 +9.63
B18 81 219 80 19.418 226 80 10.064 +3.22

AVG δCSTC / TS-CST (%): +3.07

be guided differently through the solution space for various
delay bounds. For problems where we do not know the optimal
solution, we simply compare the performance of the two
implemented algorithms. Unfortunately, to the best of our
knowledge, there is no test data available for the CMStTG
problem. For comparison, we calculated the deviation of each
solution obtained by the CSTC algorithm above the
corresponding solution obtained by the TS-CST algorithm. For
easier visualization of the obtained results we present this
comparison graphically for the middle delay bound (∆1) in
Figure 1.

For problems with 63, 94 and 100 edges (problems B01-
B09) we ran our algorithm for 25 iterations, while for the
remaining larger problems (B10-B18) we ran it for 40
iterations. We recorded the cost, delay, and time for these runs
(CTS-CST, DTS-CST, TTS-CST). It is important to keep in mind that CTS-CST
was often reached in a lesser number of iterations in which case
the execution time would be shorter.

 Deviation of CSTC over TS-CST for ∆1

-5

0

5

10

15

20

25

B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 B11 B12 B13 B14 B15 B16 B17 B18
problem

 δ
 (

%
)

δCSTc/TS-CST
AVG: +3.07%

Figure 1. Deviation of the cost of the solution obtained by CSDC over
TS-CST for ∆1

TABLE III. COMPARISON OF THE SOLUTION QUALITY FOR ∆2 = 1.1 * ∆1

TS-CST CSTC Probl. ∆2
CTS-

CST
DTS

-CST
TTS-

CST2
(sec)

CCST

C

DCST

C

TCSTC
(sec)

δCSTC /

TS-CST
(%)

B01* 35 82* 30 0.199 82* 30 0.370 0
B02* 62 83* 55 0.270 90 55 1.020 +8.43
B03* 87 138* 78 0.321 140 78 1.511 +1.43
B04* 65 59* 58 2.093 64 58 1.301 +8.47
B05 30 76 29 2.454 66 27 0.510 -13.16
B06 73 124 72 1.922 128 65 1.391 +3.26
B07* 58 111* 51 0.700 118 51 2.873 +6.31
B08* 55 104* 49 0.550 110 39 2.713 +5.77
B09* 58 221 57 0.571 225 51 2.853 +1.81
B10* 87 86* 66 9.855 99 63 4.907 +15.12
B11 84 93 49 10.304 92 75 4.707 -1.08
B12* 84 182 80 9.834 176 82 4.737 -3.30
B13* 43 165* 38 2.283 187 38 4.647 +13.33
B14 79 238 74 3.114 238 70 9.133 0
B15* 86 318* 81 3.004 322 50 10.064 +1.26
B16 72 149 58 26.037 137 64 8.913 -8.05
B17 74 133 71 25.686 143 57 9.633 +7.52
B18 90 222 84 19.889 226 80 10.925 +1.80

AVG δCSTC / TS-CST (%): +2.71

Testing showed that the length of the tabu list was of little
importance. Similar results were obtained for lengths 1 to 10.
The key is that the list contain at least one element to prevent
the algorithm from oscilating between two neighboring
solutions. The shown results are those in which the length of
the tabu list is set to 1.

B.

C.

Kompella et al.'s CSTC Algorithm
Kompella et al.'s CSTC algorithm for the CMStTG problem

does the following: First it finds the constrained cheapest path
for every pair of nodes using a dynamic programming
approach similar to Floyd's shortest path algorithm [2]. The
constrained cheapest path between two nodes is the path that is
of minimum cost while the delay along the path is less than the
delay bound. Next, it constructs a closure graph which is a
complete graph over all the nodes in D (the source and all the
destination nodes) where the edge between two nodes
represents the constrained cheapest path between those nodes.
A constrained spanning tree of this closure graph is then found
using a greedy approach. The tree starts with the source node
and subsequently adds the cheapest edge that does not violate
the delay contraint. Finally, the edges of the contrained
spanning tree are expanded into the constrained paths in the
original graph and any loops that may be created are removed.

 Summary of Results
For all three delay bounds, the TS-CST algorithm

performed better than the CSTC algorithm. For ∆1, TS-CST
gave better or equal solutions (marked in bold) for 13 out of 18
problems. For ∆2, this was the case for 14 out of 18 problems,
while for ∆3, TS-CST performed better or equal to CSTC for 15
out of 18 problems. In the 21 cases where the optimal solution
is known (denoted as *), TS-CST found the optimal solution in
19 cases, while CSTC found it only in 2 cases.

It is difficult to compare the speed of these algorithms since
the TS-CST algorithm can be terminated at any time depending
on the desired number of iterations. Of course, the more
iterations, the more likely that the solution quality will

TABLE IV. COMPARISON OF THE SOLUTION QUALITY FOR ∆3 = 0.9 * ∆1

TS-CST CSTC Probl. ∆3
CTS-

CST
DT

S-

CST

TTS-

CST2
(sec)

CCSTC DCST

C

TCSTC
(sec)

δCSTC /

TS-CST
(%)

B01 27 - - - - - - -
B02 50 91 43 0.199 91 43 0.861 0
B03 71 144 59 0.280 155 70 0.510 +7.64
B04 53 64 42 1.992 80 48 0.981 +25.00
B05 24 75 21 2.514 66 18 0.369 -12.00
B06 59 127 53 2.042 135 52 1.091 +6.30
B07 46 118 33 0.750 128 32 2.244 +8.47
B08 45 107 34 0.561 111 34 2.163 +3.74
B09 46 - - - - - - -
B10 60 91 57 9.844 100 51 3.294 +9.89
B11 68 92 61 10.924 93 57 3.804 +1.09
B12 68 177 65 8.622 180 67 3.835 +1.69
B13 35 - - - 217 34 3.904 -
B14 63 246 55 2.723 243 50 7.280 -1.22
B15 70 330 61 2.713 330 63 7.981 0
B16 58 146 57 25.987 146 54 7.069 0
B17* 60 131* 59 25.666 165 50 7.730 +25.95
B18 72 227 69 20.399 228 70 8.833 +0.44

AVG of found δCSTC / TS-CST (%): +6.41

improve. The CSTC algorithm, on the other hand, ends
deterministically, and its execution time increases continually
with the number of nodes and with the value of the delay
bound. The execution time of TS-CST depends more on the
density of the graph and, therefore, performs better than CSTC
for the given runs of 25 and 40 iterations for problems B01-
B03, B07-B09, and B13-B15 where the ratio of edges:nodes is
smaller. For the remaining problems, the CSTC algorithm is
faster. An advatage of TS-CST over CSTC is that TS-CST can
always be terminated earlier. Provided that the delay bound
could be met, the TS-CST algorithm produces a result (even if
inferior) when terminated earlier, while the CSTC algorithm
must run its entire course and only produces a result at the end.

V. CONCLUSION
In this paper we proposed a tabu search heuristic for

solving the delay constrained multicast routing problem. This
type of routing is needed by several multimedia network
applications which require the transfer of information in real-
time environments and can therefore tolerate only a bounded
end-to-end delay. In the proposed heuristic, the problem is
reduced to the Constrained Minimum Steiner Tree problem
which belongs to the NP-complete class of problems. The
proposed tabu search method explores various areas of the
solution space of the given problem. Testing on a group of
problems availabe in SteinLib has shown that this heuristic
gives near-optimal solutions in moderate time for small and
medium sized problems. As a result of preliminary testing and
comparing with Kompella et al.'s centralized algorithm for
multicast routing for multimedia communication, it is shown
that the proposed heuristic gives comparable or better results
for this set of problems.

Tabu search is a well known heuristic that has been applied
to a wide array of optimization problems although it seems
little used in research dealing with multicast routing. Based on
the encouraging results of this study, research on further
adaptation of tabu search strategies for this class of problems is

desirable. Further avenues of research could include the
following modifications of the problem: incorporating other
QoS constraints such as bandwidth, dealing with variable delay
values, and dealing with dynamic multicast routing (multicast
members can join and leave the group during the lifetime of the
connection).

REFERNCES
[1] T.H. Cormen, C.E. Leiserson, and R.L. Revest, Introduction to

algorithms, MIT Press, 1997.
[2] R.W. Floyd. Algorithm 97: Shortest Paths. Comm. Of the AMC, 5:345,

1962.
[3] M.R. Garey and D.S., Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness, Freeman, San Francisco (1979).
[4] T. Koch, A. Martin, and S. Voβ, SteinLib: An Updated Library on

Steiner Tree Problems in Graphs. Available online at:
http://elib.zib.de/steinlib, 2001.

[5] V. Kompella, Multicast Routing Algorithms for Multimedia Traffic, PhD
thesis, University of California, Sandiego, 1993.

[6] V. P. Kompella, J. C. Pasquale, and G.C. Plyzos, Multicast routing
problems, IEEE/ACM Trans.on Networking, Vol. 1, No. 3, pp.286-292,
1993.

[7] P. Leguesdron, J. Levendovsky, M. Molnar, and C. Vegso, Multicast
routing with bandwidth requirement in the case if incomplete
information as a Steiner Tree problem, RR INRIA no. 4343, December
2001.

[8] R. Widyono, The design and evaluation of routing algorithms for real-
time channels, Technical Report TR-94-024, ICSI, University of
California, Berkeley, 1994.

[9] Q. Zhang and Y.W. Leung, An orthogonal genetic algorithm for
multimedia multicast routing, IEEE Trans. On Evolutionary
Computation, Vol. 3, No. 1, pp. 53-61, 1999.

[10] X. Zhou, C. Chen and G. Zhu, A Genetic Algorithm for Multicasting
Routing Problem, Proceedings of International Conference on
Communication Technologies (ICCT2000), Beijing 2000.

[11] Q. Zhu, M. Parsa, and J. J. Garcia-Luna-Aceves, A source based
algorithm for delay-constrained minimum-cost multicasting,
Proceedings of IEEE INFOCOM, Boston, M.A. pp.377-385, 1995.

	Introduction
	THE DCMR PROBLEM MODEL
	A TABU SEARCH HEURISTIC FOR THE DCMR PROBLEM
	The Idea Behind Tabu search
	Description of the Proposed Algorithm
	Graph Reductions
	The Proposed Tabu search Algorithm: TS-CST

	NUMERICAL RESULTS
	The Test Data and Experimental Method
	Kompella et al.'s CSTC Algorithm
	Summary of Results

	CONCLUSION
	
	
	
	REFERNCES

