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Abstract— With today's development of information technology 
comes the increased development of numerous real-time 
multimedia network applications. Some examples include video 
and tele-conferencing, tele-medicine, video-on-demand, distance 
education, applications in finance, etc. Several of these 
applications require multicasting with a certain Quality of 
Service (QoS). One of the most important QoS parameters is the 
maximum end-to-end delay from the source to any destination in 
a multicast session. This paper deals with the problem of Delay-
Constrained Multicast Routing (DCMR). The DCMR problem 
can be reduced to the Constrained Minimum Steiner Tree 
Problem in Graphs (CMStTG). Since the Minimum Steiner Tree 
Problem in Graphs (MStTG) has been proven to be NP-complete, 
several heuristics have been developed for solving MStTG and 
CMStTG.  In this paper, we suggest a tabu search heuristic for 
the DCMR problem. This heuristic was developed on the basis of 
a tabu search heuristic designed for solving unconstrained 
minimum Steiner tree problems. Preliminary testing on data 
from a publicly available library, SteinLib, has shown that this 
heuristic gives near optimal solutions in moderate time and a 
moderate number of iterations for medium sized problems (50-
100 nodes). Comparing with a well known algorithm for solving 
the CMStTG problem, tests have shown that our tabu search 
heuristic is superior in quality for medium sized problems. 

Keywords- multicast, constrained Steiner Tree, tabu search, 
QoS  

I.  INTRODUCTION 
Multicast is a mechanism that enables information to be 

sent from one source to a group of destinations. In other words,  
it is a technique that logically connects a subset of nodes in a 
network. The development of  multimedia applications in the 
past several years has created an increasing need for this type 
of distribution of information. Many applications, such as 
video-conferencing, distance education, video-on-demand, etc., 
require packets of information to be sent with a certain Quality 
of Service (QoS) . Among the most important QoS demands 
are those concerning bandwidth and delay. In this paper we 
will concentrate on the demand concerning end-to-end delay. 
Real-time applications do not allow the end-to-end delay to 
exceed a certain delay bound which represents a measure of the 
quality of service of that application. 

To support these types of multimedia applications, 
specifically to support a large number of multicast sessions, 
networks require efficient routing algorithms. These algorithms 
must provide the neccessary Quality of Service while 
minimizing the use of network resouces. In a given network, 
multicasting usually consists of finding a minimum cost tree 
that includes the source and all the destination nodes, while 
attempting to satisfy the delay constraint and other QoS 
demands. Other QoS demands could include the minimum 
required bandwidth, the maximum allowed packet loss ratio 
and the maximum delay jitter. The tree topology is most 
frequentley used, since it enables parallel sending of packets to 
multiple destinations and duplicating the packets is only 
neccessary where the tree branches. 

Multicast routing is often reduced to the Minimum Steiner 
Tree Problem in Graphs (MStTG). Generally, for a given graph 
G =(V, E), where V is a set of nodes and E is a set of edges, 
and a given subset of nodes, D V, a Steiner tree is one which 
connects all the nodes in D using a subset of edges in E. This 
tree may or may not include nodes in V\D. Nodes in V\D which 
are included in the Steiner tree are called Steiner nodes. The 
MStTG problem deals with searching for such a tree that is of 
minimal wieght in a weighted graph. This basically reduces to 
searching for the set of Steiner nodes that gives the best 
solution. Since the MStTG problem belongs to the NP-
complete class of problems [3], several heuristic algorithms 
have been developed to  solve  it suboptimally. Examples of 
such heuristics are found in [5], [6], [8], [9] and [11]. 

⊆

The MStTG problem can be augmented to include 
additional constraints giving rise to the constrained MStTG 
(CMStTG) problem. This paper is concerned with delay 
constrained multicast routing (the DCMR problem). This 
problem can be reduced to the Constrained Minimum Steiner 
Tree Problem in Graphs (CMStTG), where the contraint is the 
maximum end-to-end delay from the source to any destination. 
This problem refers to the search for the minimum Steiner tree 
that satisfies a delay constraint. We suggest a heuristic 
algorithm for solving the CMStTG problem implementing the 
tabu search method. Our heuristic was motivated by a tabu 
search heuristic suggested by Leguesdron, Levendovsky, 
Molnar and Vegso [7] for solving the MStTG problem. In our 



approach, we incorporated a delay constraint which makes the 
problem more complex. The algorithm was tested on data from 
SteinLib ([4]), and compared to the results of Kompella et al.'s 
centralized algorithm CSTC [6]. SteinLib is a library of test data 
which includes optimal solutions for Steiner Tree problems and 
is available on the WWW. After testing on small and medium 
sized problems (50 – 100 nodes), results indicate that the 
proposed tabu search method is superior to Kompella et al.'s 
algorithm in solution quality. Further testing is required to 
determine more exact performance measures of this heuristic. 

In Section II we formally define the DCMR problem. In 
Section III we introduce the tabu search method and describe 
our heuristic algorithm for the DCMR problem. In Section IV 
we present the performance analysis of our algorithm. We 
finish with some concluding remarks in Section V.  

II. THE DCMR PROBLEM MODEL  
The communication network is modeled as a graph 

G=(V,E), where V is the set of nodes and E is the set of edges. 
On the graph G we define the functions c(i,j) and d(i,j), where 
c(i,j) is the cost of using edge (i,j)∈E and d(i,j) is the delay 
along edge (i,j)∈E. Given is a source node s and a set of 
destination nodes S, where {s} S  V. The upper delay 
bound on the path from s to any node in S is denoted as ∆. The 
delay-constrained multicast routing problem (DCMR) searches 
for  a tree T = (V

U

j)

⊆

∈ TE 

T, ET), where VT ⊆

 j)(i,

 V and ET  E,  while 

minimizing the cost of the tree, ∑  subject to the 

following constraints: {s} S   V

⊆
j)c(i,

⊆U

)j,i(

T  and D(s, v) < ∆ for every 

v∈S, where D(s,v)=  for all edges (i,j) ∈ E∑ d(i, T on 

the path from s to v in T. 

We assume that the delay of an edge is a constant value 
which represents the sum of the propagation delay along the 
edge and the switching delay at the previous node. We also 
assume that the cost of an edge is not neccessarily proportional 
to its delay.  The cost of an edge can represent various values 
such as the actual cost or the transfer capacity of the link.  

III. 

A. 

B. 

1) 

A TABU SEARCH HEURISTIC FOR THE DCMR 
PROBLEM 

Tabu search is a meta-heuristic which guides other 
heuristics in such a way that they explore various areas of the 
solution space. As a result, the tabu search method prevents 
heuristics from remaining in local optimums. 

The Idea  Behind  Tabu search 
In every iterative step of the tabu search method, we begin 

with the current solution. We explore its 'neighborhood', and 
from this neighborhood we select the best possible solution that 
does not necessarily have to improve the current one. This new 
solution now becomes the current solution, and this is referred 
to as a 'move'. We define the 'neighborhood' of the current 
solution as that part of the solution space that is reachable by 
applying an elementary transformation to the current solution. 
These elementary transformations can be defined in numerous 

ways in various tabu search heuristics and depend on the 
specifics of the problem. 

Certain problems arise while searching for the optimal 
solution in this manner. Let us suppose that the current solution 
is a local optimum. In this case, the new current solution 
obtained in the next move would have to be somewhat worse. 
The problem arises in the subsequent move because we would 
be forced to return to our local optimum. In every following 
iteration, we would alternate between these two solutions. 
Hence, this heuristic would not enable us to explore various 
areas of the solution space and would come to a standstill at the 
first local optimum. 

To prevent this occurrence, the tabu search method 
introduces the idea of 'memory'. The tabu search method 
'memorizes' the elementary transformations applied in a 
number of previous moves. The inverses of these 
transformations are placed in a so-called 'tabu-list'. While 
exploring the neighborhood of the current solution in each 
iteration, those potential solutions that can be reached by 
applying a transformation on the tabu-list are eliminated.  In 
other words, moves that are the opposite of those already 
executed are forbidden. This prevents us from going back to an 
already used solution and getting stuck in a local optimum. 

The tabu-list is updated following each move. This is done 
by adding the inverse of the last executed elementary 
transformation and removing the oldest one on the list of the 
list is full. The length of the tabu-list can vary depending on 
different problems. It is often determined experimentally in 
order to allow good exploration of the solution space. 

Description of the Proposed Algorithm  
While solving the DCMR problem using our tabu search 

heuristic, the problem is first reduced to the CMStTG problem. 
In this problem, the constraint is the end-to-end delay from the 
source to each destination. The heuristic is further developed 
through modifications of a heuristic suggested by Leguesdron, 
Levendovsky, Molnar and Vegso [7] for solving the MStTG 
problem. 

It has already been mentioned that for a given weighted 
graph G=(V, E) and a set of nodes D V, a minimum Steiner 
tree is such a tree which connects all the nodes in D using a 
subset of edges in E that give the minimum total weight. In our 
problem, we distinguish between one source node s and a 
group of destination nodes S, so for us D = . Nodes in 
V\D , which are included in the Steiner tree, are called Steiner 
nodes. 

⊆

Ss ∪

Graph Reductions 
In accordance with the problem, we can reduce the size of 

the graph before implementing the algorithm using a few of the 
standard graph reductions described in [10], with a slight 
modification due to the added delay constraint. First, we prune 
the graph of all nondestinaton nodes (nodes in V\D) that are of 
degree 1 since they will surely not be included in the solution. 
Secondly, we observe that the adjacent edge of every 
destination node that is of degree 1 will  always be in the 
Steiner tree. As a result of this, we  can deem the adjacent node 
of every such destination node as a destination node itself (if it 



is not already deemed as such). This reduces the size of our 
problem, since it reduces the number of nondestination nodes 
among wich we have to decide which are to be included in the 
Steiner tree.   

For further reduction, we do the following: for every 
nondestination node k that is of degree 2 with adjacent nodes i 
and j, we can replace edges (i, k) and (k, j) from E with one 
edge (i, j), where c(i, j)= c(i, k) + c(k, j) and d(i,j) = d(i,k) + 
d(k,j). Node k is then deleted from the graph. If there already 
exists an edge (i, j) in E, we compare its cost and delay 
parameters to those of the newly constructed edge. If one of 
these edges has both a lesser cost and a lesser delay, we can 
eliminate the other from E. Otherwise, both edges remain in E. 
This is because for various delay bounds the cheaper edge with 
the greater delay may not satisfy the delay constraint while the 
more expensive one might. After performing these reductions, 
we execute our tabu search algorithm on the reduced graph 

2) The Proposed Tabu search Algorithm: TS-CST 
We will refer to our tabu search heuristic as the Tabu 

Search – Constrained Steiner Tree (TS-CST) algorithm. 
Potential solutions in our heuristic are potential constrained 
Steiner trees represented by binary sets consisting of |V\D| bits. 
Each bit corresponds to a different node in V\D. Nodes whose 
corresponding bits are set to zero in a given configuration are 
Steiner nodes. Nodes whose corresponding bits are set to 1 are 
not included in the constrained Steiner tree. Each configuration 
corresponds to a potential constrained Steiner tree because 
there exists the possibility that for some configurations, no 
constrained Steiner Tree can be found. Such is the case if a 
configuration leaves the graph unconnected because then no 
Steiner tree exists. Another possibility is that for a given 
configuration, we cannot find a Steiner tree that satisfies the 
given delay bound. We denote the cost of such solutions as 
infinite. 

The evaluation of a potential solution starts by eliminating 
the non-Steiner non-destination nodes (that is, those nodes 
whose coresponding bits are set to 1) from graph G along with 
all their adjacent edges. The next step of the evaluation is to 
find a Delay Constrained Spanning Tree (DCST) of this 
modified graph while attempting to minimize its cost. There 
are exact algorithms for finding the Minimum Spanning Tree 
(MST) of a given graph in polynomial time. Such a solution, 
though, may not necessarily satisfy our delay constraint. In this 
paper, we modified Prim's algorithm for finding the MST so as 
to yield a solution in which the end to end delay from the 
source to every destination node is less than the given delay 
bound ∆. Prim's algorithm [1], does the following: the tree 
initially consists of one randomly selected node and in each 
following iteration, the closest node to the existing tree is 
added. This is done by examining all edges adjacent to the 
existing tree and choosing the cheapest one. The procedure 
ends when all the nodes are included in the tree. This tree 
represents the MST of the initial graph. To ensure that our 
delay constraint is met, we do the following: the tree initially 
consists of only the source node. When subsequently searching 
for the closest node to the existing tree, that is while examining 
all adjacent edges, we choose that edge which is cheapest but 
whose addition to the tree does not exceed the delay bound. 
The procedure is finished when all the nodes are in the tree. In 

every iteration of the TS-CST algorithm, to explore a 
neighborhood, we find the cost of the found DCST for every 
neighboring solution.  

As already mentioned, neighboring solutions with respect 
to the current one are all those that can be reached by applying 
an elementary transformation to the current solution. In our 
heuristic, as in [7], we use a set of |V\D| elementary 
transformations, where the n-th transformation is defined as 
changing the value of the n-th bit in the configuration that 
represents the current solution. In accordance with this 
definition, the neighborhood of the current solution is a set of 
all the configurations which differ from the configuration of the 
current solution by only one bit. This basically means that in 
one 'move', our new current solution can only add or remove 
one Steiner node with respect to the previous current solution. 
Formally, if Xi-1=x1

(i-1)x2
(i-1)...x|V\D|

(i-1) represents some 
configuration of bits, where every xk , k=1,2,...,|V\D| is a bit 
which corresponds to the k-th node in V\D, applying 
elementary transformation mn, n=1,2,...,|V\D|  to Xi-1 gives us: 

Xi  = x1
(i)x2

(i)... x|V\D|
(i) = mn (Xi-1) = 

=  x1
(i-1)... xn-1

(i-1) )1i(
nx −  xn+1

(i-1)... x|V\D|
(i-1).                     (1) 

In an i-th move, we select the neighboring solution Xi 
whose DCST has the minimum cost and which is obtained by 
applying an elementary transformation to Xi-1 that is not on the 
tabu-list. This solution is compared with the best found 
solution, the current incumbent solution, and the better of the 
two is kept. The tabu-list is updated after every move by 
adding the inverse of the elementary transformation applied to 
Xi-1 to get Xi and eliminating the oldest member on the list. 

It is imporatant to note that there exists the possibility that 
no feasable solution can be found in the neighborhood of Xi-1  
(the graph is always left unconnected or ∆ cannot be satisfied). 
In this case, it is neccessary to choose an infeasable 
neighboring solution to become the new current soultion Xi. 
This solution, although it cannot improve the current 
incumbent one, enables us to further explore the solution space 
in the following iteration. In our heuristic, we choose the 
infeasable neighboring solution  mn(Xi-1), where n =(i) modulo 
|V\D|+1 to become  our new current solution Xi.  

The initial configuration of the TS-CST algorithm is such 
that all the bits are set to zero. This means that the Steiner tree 
that corresponds to the initial configuration includes all the 
nodes in V\D. In other words, all the nodes in V\D are Steiner 
nodes.  

A simple description of the TS-CST algorithm follows: 

Begin 
//initialization 
Input nodes V and edges E from graph G; 
Reduce graph G; 
//initial configuration 
X0 = x1(0)x2(0)..x|V\D|(0), where xk(0)=0, k=1,2,…,|V\D| 
Update the graph so as to correspond to 
 configuration X0; 
X := X0;    //global solution 
C := ∞;     //cost of the global solution 



Find the DCST for configuration X using our 
modificatio  Prim's MST alg;  n of

If DCST(X) exists then 
 C := cost of DCST(X); //cost of the global solution 
EndIf 
TabuList := {}; 
DelayBound := ∆; 
i = 0;      
 
//iterations 
While  i < desired number of iterations  do 
Cit = ∞ ; 
X = {}; it For n=1, ..., |V\D| do 
 If m ∉TabuList, then  n 

  Xi := mn (Xi-1); 
  Update the graph so as to   
   correspond to config Xi; 
  Find the DCST for config. Xi using  
   our modification of   
   Prim's MST alg; 
  n   co
  If graph is unconnected or ∆  
   can't be met (DCST doesn't  
   exist), then 

C  := st DCST(Xi);  

   Cn := ∞; 
  EndIf 
  If Cn < Cit then 
   Cit := Cn; 
   Xit := Xi; 
  EndIf 
 EndIf 
EndFor 
If Cit := ∞ then  
 //no feasable neighbor was found 
 n :=  i modulo |V\D|+ 1;   
 Xi := mn(Xi-1); Else 
  Xi := Xit; EndIf 
If Cit < C  then 
 X := Xit , C = Cit;  

IV. 

A. 

EndIf 
Add mn-1 to the Tabu list; 
i := i+1; 
EndWhile 
End 

NUMERICAL RESULTS 
In this section we describe our experimental method and 

briefly summarize the obtained results. 

The Test Data and Experimental Method 
The TS-CST algorithm, along with Kompella et al.'s 

centralized algorithm CSTC [6], was implemented in C++ and 
tested on data from [4]. (A brief description  of the CSTC  

TABLE I.  CHARACTERISTICS OF THE  PROBLEM SET AND THE OBTAINED 
SOLUTION QUALITY  WHILE  SIMULATING THE  MSTTG PROBLEM (∆=∞) 

TS-CST CSTC Probl. |V| |D
| 

|E| Copt 
δTS-

CST 
(%) 

DTS-

CST 
δCSTC 

 (%) 

DCSTC 

B01 50 9 63 82 0 30 0 30 
B02 50 13 63 83 0 55 8.43 55 
B03 50 25 63 138 0 78 1.45 78 
B04 50 9 100 59 0 58 0 58 
B05 50 13 100 61 1.64 39 4.92 26 
B06 50 25 100 122 0 93 4.92 65 
B07 75 13 94 111 0 51 0 51 
B08 75 19 94 104 0 49 0 49 
B09 75 38 94 220 0 66 2.27 51 
B10 75 13 150 86 0 66 13.95 78 
B11 75 19 150 88 11.36 91 4.55 75 
B12 75 38 150 174 0 75 0 125 
B13 100 17 125 165 0 38 6.06 53 
B14 100 25 125 235 1.28 80 1.28 70 
B15 100 50 125 318 0 81 2.52 77 
B16 100 17 200 127 7.09 95 7.87 64 
B17 100 25 200 131 1.53 71 2.29 66 
B18 100 50 200 218 0 113 3.67 80 

 

algorithm is given in IV.B.) Both programs were executed on a 
PC powered by an intel Celeron 600MHz processor with 
256MB RAM. The dimensions of the problems are shown in 
TABLE I.  This test data was generated for the Minimum 
Steiner Tree problem in Graphs (MStTG) with no added 
constraints.  As a result, the edges in the given test problems 
have assigned only a cost value. Since our problem has an 
added delay constraint we did the following: first we assigned a 
randomly generated delay value to each edge. Next we chose 
the first node in set D to serve as our source s. Set D is the set 
of nodes given in the test data that must be spanned by the 
Steiner tree. The remaining nodes in D\{s} are destination 
nodes S. 

Next we set the delay bound to a high enough value so as 
not to act as a constraint (i.e. we simulated the MStTG 
problem) and ran both CSTC and TS-CST. (The delay bound ∆ 
cannot actually be set to ∞ since the time complexity of the 
CSTC algorithm is O(∆ |V|3)). If the cost of the obtained 
solution is that supplied by the test data, we know that it is 
optimal. We calculated the deviation of the obtained cost above 
the optimal one and the maximum delay from the source to any 
destination in the obtained solutions (TABLE I. ). In our 
problem, the smaller the delay bound, the stronger the 
constraint. Therefore, to better test the performance of the 
algorithms,  we chose the smaller of the found maximum 
delays and this value, incremented by 1, we set as our delay 
bound ∆1 (TABLE II. ). We also tested the algorithms with 
delay bounds 10% greater (∆2, TABLE III. ) and 10% smaller 
(∆3, TABLE IV. ) than ∆1. Note that if the cost of the found 
solution to the MStTG problem that corresponds to the chosen 
maximum delay is optimal, then  we know that this is also the 
optimal solution to the CMStTG problem when the delay 
bound is ∆1 or ∆2. Such problems are marked with * in Tables 
II and III and help give us a better idea of the quality of our 
results. It is also possible for the TS-CST algorithm to obtain 
the optimal solution provided by the test data for a smaller 
delay bound even though it did not find such a solution when 
simulating the MStTG problem. (Such is the case for problem 
B17 for ∆3 (TABLE IV. ).) This is because the algorithm can  



TABLE II.  COMPARISON OF THE SOLUTION QUALITY FOR                            
∆1 = MIN (DTS-CST(∆=∞) , DCSTC(∆=∞) ) + 1 

TS-CST CSTC Probl. ∆1 
CTS-

CST 
DTS

-CST 
TTS-

CST2 
(sec) 

CCST

C 

DCST

C 

TCSTC 
(sec) 

δCSTC / 

TS-CST 
(%) 

B01* 31 82* 30 0.189 82* 30 0.331 0 
B02* 56 83* 55 0.249 90 55 0.930 +8.43 
B03* 79 138* 78 0.321 140 78 1.341 +1.45 
B04* 59 59* 58 2.063 75 58 1.112 +2.71 
B05 27 76 26 2.484 63 26 0.450 -1.71 
B06 66 126 63 1.892 128 65 1.232 +1.59 
B07* 52 111* 51 0.690 118 51 2.554 +6.30 
B08* 50 104* 49 0.531 110 39 2.424 +5.77 
B09 52 231 48 0.541 225 51 2.523 -2.60 
B10* 67 86* 66 9.653 106 51 3.704 +23.26 
B11 76 92 61 10.845 92 75 4.276 0 
B12* 76 174* 66 8.993 175 71 4.307 +0.57 
B13* 39 165* 38 2.234 187 38 4.456 +1.33 
B14 71 239 64 2.813 238 70 8.021 -0.42 
B15 78 330 61 2.624 328 71 8.812 -0.61 
B16 65 149 58 25.656 143 64 8.001 -4.02 
B17 67 135 49 25.095 148 49 8.683 +9.63 
B18 81 219 80 19.418 226 80 10.064 +3.22 

AVG δCSTC / TS-CST (%): +3.07 

 

be guided differently through the solution space for various 
delay bounds. For problems where we do not know the optimal 
solution, we simply compare the performance of the two 
implemented algorithms. Unfortunately, to the best of our 
knowledge, there is no test data available for the CMStTG 
problem. For comparison, we calculated the deviation of each 
solution obtained by the CSTC algorithm above the 
corresponding solution obtained by the TS-CST algorithm. For 
easier visualization of the obtained results we present this 
comparison graphically for the middle delay bound (∆1) in 
Figure 1.  

For problems with 63, 94 and 100 edges (problems B01-
B09) we ran our algorithm for 25 iterations, while for the 
remaining larger problems (B10-B18) we ran it for 40 
iterations. We recorded the cost, delay, and time  for these runs 
(CTS-CST, DTS-CST, TTS-CST). It is important to keep in mind that CTS-CST 
was often reached in a lesser number of iterations in which case 
the execution time would be shorter.  

 Deviation of CSTC over TS-CST for ∆1
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Figure 1.   Deviation of the cost of the solution obtained by CSDC over      
TS-CST for ∆1 

TABLE III.  COMPARISON OF THE SOLUTION QUALITY FOR  ∆2 = 1.1 * ∆1 

TS-CST CSTC Probl. ∆2 
CTS-

CST 
DTS

-CST 
TTS-

CST2 
(sec) 

CCST

C 

DCST

C 

TCSTC 
(sec) 

δCSTC / 

TS-CST 
(%) 

B01* 35 82* 30 0.199 82* 30 0.370 0 
B02* 62 83* 55 0.270 90 55 1.020 +8.43 
B03* 87 138* 78 0.321 140 78 1.511 +1.43 
B04* 65 59* 58 2.093 64 58 1.301 +8.47 
B05 30 76 29 2.454 66 27 0.510 -13.16 
B06 73 124 72 1.922 128 65 1.391 +3.26 
B07* 58 111* 51 0.700 118 51 2.873 +6.31 
B08* 55 104* 49 0.550 110 39 2.713 +5.77 
B09* 58 221 57 0.571 225 51 2.853 +1.81 
B10* 87 86* 66 9.855 99 63 4.907 +15.12 
B11 84 93 49 10.304 92 75 4.707 -1.08 
B12* 84 182 80 9.834 176 82 4.737 -3.30 
B13* 43 165* 38 2.283 187 38 4.647 +13.33 
B14 79 238 74 3.114 238 70 9.133 0 
B15* 86 318* 81 3.004 322 50 10.064 +1.26 
B16 72 149 58 26.037 137 64 8.913 -8.05 
B17 74 133 71 25.686 143 57 9.633 +7.52 
B18 90 222 84 19.889 226 80 10.925 +1.80 

AVG δCSTC / TS-CST (%): +2.71 

 

Testing showed that the length of the tabu list  was of little 
importance. Similar results were obtained for lengths 1 to 10. 
The key is that the list contain at least one element to prevent 
the algorithm from oscilating between two neighboring 
solutions.  The shown results are those in which the length of 
the tabu list is set to 1. 

B. 

C. 

Kompella et al.'s CSTC Algorithm 
Kompella et al.'s CSTC algorithm for the CMStTG problem 

does the following: First it finds the constrained cheapest path 
for every pair of nodes using a dynamic programming 
approach similar to Floyd's shortest path algorithm [2]. The 
constrained cheapest path between two nodes is the path that is 
of minimum cost while the delay along the path is less than the 
delay bound. Next, it constructs a closure graph which is a 
complete graph over all the nodes in D (the source and all the 
destination nodes) where the edge between two nodes 
represents the constrained cheapest path between those nodes. 
A constrained spanning tree of this closure graph is then found 
using a greedy approach. The tree starts with the source node 
and subsequently adds the cheapest edge that does not violate 
the delay contraint. Finally, the edges of the contrained 
spanning tree are expanded into the constrained paths in the 
original graph and any loops that may be created are removed. 

 Summary of Results 
For all three delay bounds, the TS-CST algorithm 

performed better than the CSTC algorithm. For ∆1, TS-CST 
gave better or equal solutions (marked in bold) for 13 out of 18 
problems. For ∆2, this was the case for 14 out of 18 problems, 
while for ∆3, TS-CST performed better or equal to CSTC  for 15 
out of 18 problems. In the 21 cases where the optimal solution 
is known (denoted as *), TS-CST found the optimal solution in 
19 cases, while CSTC found it only in 2 cases.  

It is difficult to compare the speed of these algorithms since 
the TS-CST algorithm can be terminated at any time depending 
on the desired number of iterations. Of course, the more 
iterations, the more likely that the solution quality will  



TABLE IV.  COMPARISON OF THE SOLUTION QUALITY FOR  ∆3 = 0.9 * ∆1 

TS-CST CSTC Probl. ∆3 
CTS-

CST 
DT

S-

CST 

TTS-

CST2 
(sec) 

CCSTC DCST

C 

TCSTC 
(sec) 

δCSTC / 

TS-CST 
(%) 

B01 27 - - - - - - - 
B02 50 91 43 0.199 91 43 0.861 0 
B03 71 144 59 0.280 155 70 0.510 +7.64 
B04 53 64 42 1.992 80 48 0.981 +25.00 
B05 24 75 21 2.514 66 18 0.369 -12.00 
B06 59 127 53 2.042 135 52 1.091 +6.30 
B07 46 118 33 0.750 128 32 2.244 +8.47 
B08 45 107 34 0.561 111 34 2.163 +3.74 
B09 46 - - - - - - - 
B10 60 91 57 9.844 100 51 3.294 +9.89 
B11 68 92 61 10.924 93 57 3.804 +1.09 
B12 68 177 65 8.622 180 67 3.835 +1.69 
B13 35 - - - 217 34 3.904 - 
B14 63 246 55 2.723 243 50 7.280 -1.22 
B15 70 330 61 2.713 330 63 7.981 0 
B16 58 146 57 25.987 146 54 7.069 0 
B17* 60 131* 59 25.666 165 50 7.730 +25.95 
B18 72 227 69 20.399 228 70 8.833 +0.44 

AVG of found δCSTC / TS-CST (%): +6.41 

 

improve. The CSTC algorithm, on the other hand, ends 
deterministically, and its execution time increases continually 
with the number of nodes and with the value of the delay 
bound. The execution time of TS-CST depends more on the 
density of the graph and, therefore, performs better than CSTC 
for the given runs of 25 and 40 iterations for problems B01-
B03, B07-B09, and B13-B15 where the ratio of edges:nodes is 
smaller. For the remaining problems, the CSTC algorithm is 
faster. An advatage of TS-CST over CSTC is that TS-CST can 
always be terminated earlier. Provided that the delay bound 
could be met, the TS-CST algorithm produces a result (even if 
inferior) when terminated earlier, while the CSTC algorithm 
must run its entire course and only produces a result at the end.  

V. CONCLUSION 
In this paper we proposed a tabu search heuristic for 

solving the delay constrained multicast routing problem. This 
type of routing is needed by several multimedia network 
applications which require the transfer of information in real-
time environments and can therefore tolerate only a bounded 
end-to-end delay. In the proposed heuristic, the problem is 
reduced to the Constrained Minimum Steiner Tree problem 
which belongs to the NP-complete class of problems. The 
proposed tabu search method explores various areas of the 
solution space of the given problem. Testing on a group of 
problems availabe in SteinLib has shown that this heuristic 
gives near-optimal solutions in moderate time for small and 
medium sized problems. As a result of preliminary testing and 
comparing with Kompella et al.'s centralized algorithm for 
multicast routing for multimedia communication, it is shown 
that the proposed heuristic gives comparable or better results 
for this set of problems. 

Tabu search is a well known heuristic that has been applied 
to a wide array of optimization problems although it seems 
little used in research dealing with multicast routing. Based on 
the encouraging results of this study, research on further 
adaptation of tabu search strategies for this class of problems is 

desirable. Further avenues of research could include the 
following modifications of the problem: incorporating other 
QoS constraints such as bandwidth, dealing with variable delay 
values, and dealing with dynamic multicast routing (multicast 
members can join and leave the group during the lifetime of the 
connection). 
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