LPWAN for use in agriculture

Student: Ana Pejković ana.pejkovic@ferit.hr, Josip Spišić josip.spisic@ferit.hr, Matko Zrnić matko.zrnic@ferit.hr Izv. prof. dr. sc. Krešimir Grgić

FERIT

Introduction

- IoT in agriculture have specific requirements
- long-range communication
- low energy consumption
 - → LPWAN technologies
 - (Low Power Wide Area Network)

LPWAN technologies

LoRa

- CSS (Chirp Spread Spectrum) modulation
- Spreading Factor (SF)

Application

- easily monitor environmental conditions in real-time and timely response to various climatic disasters.
- set up and applied to the cornfield.

- IoT in agriculture
- Cornfields
- LoRa technology
- moisture and temperature parameters
- application layer, a network layer,

- Code Rate (CR)
- Class A, B and C

Sigfox

- **BPSK** modulation
- limited data packets
- 140 messages per day
- four messages psser day can be received

NB-IoT

- licensed cellular technology
- pre-existing LTE functionality
- Standalone operation;
- In-band operation,
- Guard band operation

Comparison

NB-IoT -> lowest range -> higest date rate Sigfox -> higest range LoRa -> lowest latency

Technology	LoRa	Sigfox	NB-IoT
Range (km)	<20	<50	<10
Licenced sectre	No	No	YES

Conclusion

Data collected from sensors in the field can be transferred over a large distance in relatively real-time with low power consumption and low expenses. Low power consumption is practical considering that devices used for IoT in agriculture need to have their power supply. Long-range is required considering that devices for agriculture are located in remote and vast areas.

References

K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, "A comparative [1] study of LPWAN technologies for large-scale IoT deployment," ICT Express, vol. 5, no. 1, pp. 1–7, Mar. 2019, doi: 10.1016/j.icte.2017.12.005. H. C. Lee and K. H. Ke, "Monitoring of Large-Area IoT Sensors [2] Using a LoRa Wireless Mesh Network System: Design and Evaluation," IEEE Trans. Instrum. Meas., vol. 67, no. 9, pp. 2177– 2187, 2018, doi: 10.1109/TIM.2018.2814082.

and various sensors

Bandwidth	150/250/500 kHz	100 Hz	180 kHz
Operating frequency (MHz)	868	868	800/900/1800
Data rate	50 kbps	100 bps	200 kbps
Latency	10 ms	30 ms	10 s
Battery life (years)	>10	<10	>10

Table 1. LPWAN COMPARISON

Acknowledgement

This work is supported by the project "IoT-field: An Ecosystem of Networked Devices and Services for IoT Solutions Applied in Agriculture" co-financed by the European Union from the European Regional Development Fund within the Operational programme Competitiveness and Cohesion 2014-2020 of the Republic of Croatia.

16th International Conference on Telecommunications – PhD forum July 2nd, 2021 Zagreb, Croatia